Predicting Tunnel Squeezing Using Multiclass Support Vector Machines
نویسندگان
چکیده
منابع مشابه
Multiclass Proximal Support Vector Machines
This article proposes the multiclass proximal support vector machine (MPSVM) classifier, which extends the binary PSVM to the multiclass case. Unlike the one-versus-rest approach that constructs the decision rule based on multiple binary classification tasks, the proposed method considers all classes simultaneously and has better theoretical properties and empirical performance. We formulate th...
متن کاملSTAGE-DISCHARGE MODELING USING SUPPORT VECTOR MACHINES
Establishment of rating curves are often required by the hydrologists for flow estimates in the streams, rivers etc. Measurement of discharge in a river is a time-consuming, expensive, and difficult process and the conventional approach of regression analysis of stage-discharge relation does not provide encouraging results especially during the floods. P
متن کاملFeature selection for multiclass support vector machines
In this paper, we present and evaluate a novel method for feature selection for Multiclass Support Vector Machines (MSVM). It consists in determining the relevant features using an upper bound of generalization error proper to the multiclass case called the multiclass radius margin bound. A score derived from this bound will rank the variables in order of relevance, then, forward method will be...
متن کاملPredicting Nucleolar Proteins Using Support-Vector Machines
The intra-nuclear organisation of proteins is based on possibly transient interactions with morphologically defined compartments like the nucleolus. The fluidity of trafficking challenges the development of models that accurately identify compartment membership for novel proteins. A growing inventory of nucleolar proteins is here used to train a support-vector machine to recognise sequence feat...
متن کاملMulticlass Latent Locally Linear Support Vector Machines
Kernelized Support Vector Machines (SVM) have gained the status of off-the-shelf classifiers, able to deliver state of the art performance on almost any problem. Still, their practical use is constrained by their computational and memory complexity, which grows super-linearly with the number of training samples. In order to retain the low training and testing complexity of linear classifiers an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Civil Engineering
سال: 2018
ISSN: 1687-8086,1687-8094
DOI: 10.1155/2018/4543984